Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 134
1.
JAMA Netw Open ; 7(4): e246589, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38635271

Importance: Perioperative anxiety is prevalent among patients undergoing surgical treatment of cancer and often influences their prognosis. Transcranial direct current stimulation (tDCS) has shown potential in the treatment of various anxiety-related disorders, but data on the impact of tDCS on perioperative anxiety are limited. Objective: To evaluate the effect of tDCS in reducing perioperative anxiety among patients undergoing laparoscopic colorectal cancer (CRC) resection. Design, Setting, And Participants: This randomized clinical trial was conducted from March to August 2023 at the Affiliated Hospital of Xuzhou Medical University. Patients aged 18 years or older undergoing elective laparoscopic radical resection for CRC were randomly assigned to either the active tDCS group or the sham tDCS group. Intention-to-treat data analysis was performed in September 2023. Interventions: Patients were randomly assigned to receive 2 sessions of either active tDCS or sham tDCS over the left dorsolateral prefrontal cortex on the afternoon of the day before the operation and in the morning of the day of operation. Main Outcomes and Measures: The main outcome was the incidence of perioperative anxiety from the day of the operation up to 3 days after the procedure, as measured using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) subscale (range: 0-21, with higher scores indicating more anxiety). Secondary outcomes included postoperative delirium (assessed by the Confusion Assessment Method or Confusion Assessment Method intensive care unit scale); pain (assessed by the 10-point Numeric Rating Scale [NRS], with scores ranging from 0 [no pain] to 10 [worst pain]); frailty (assessed by the Fatigue, Resistance, Ambulation, Illness and Loss of Weight [FRAIL] Index, with scores ranging from 0 [most robust] to 5 [most frail]; and sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], with scores ranging from 0 to 21 and higher scores indicating worse sleep quality) after the 2 sessions of the tDCS intervention. Results: A total of 196 patients (mean [SD] age, 63.5 [11.0] years; 124 [63.3%] men) were recruited and randomly assigned to the active tDCS group (98 patients) or the sham tDCS group (98 patients). After the second tDCS intervention on the day of the operation, the incidence of perioperative anxiety was 38.8% in the active tDCS group and 70.4% in the sham tDCS group (relative risk, 0.55 [95% CI, 0.42-0.73]; P < .001). Patients in the active tDCS group vs the sham tDCS group were less likely to have postoperative delirium (8.2% vs 25.5%) and, at 3 days after the operation, had lower median (IQR) pain scores (NRS, 1.0 [1.0-1.0] vs 2.0 [2.0-2.0]), better median (IQR) sleep quality scores (PSQI, 10.5 [10.0-11.0] vs 12.0 [11.0-13.0]), and lower median (IQR) FRAIL Index (2.0 [1.0-2.0] vs 2.0 [2.0-3.0]). Conclusions and Relevance: Findings of this randomized clinical trial indicate that administration of 2 preoperative sessions of tDCS was associated with a decreased incidence of perioperative anxiety in patients undergoing elective CRC resection. Active tDCS was also associated with better anxiety scores, pain levels, and sleep quality as well as reduced postoperative delirium and frailty. The findings suggest that tDCS may be a novel strategy for improving perioperative anxiety in patients undergoing CRC resection. Trial Registration: Chinese Clinical Trial Register Identifier: ChiCTR2300068859.


Colorectal Neoplasms , Emergence Delirium , Frailty , Laparoscopy , Transcranial Direct Current Stimulation , Female , Humans , Male , Middle Aged , Anxiety , Fatigue , Pain , Aged
2.
Mol Psychiatry ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454083

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

3.
Anesthesiology ; 140(5): 1052-1053, 2024 May 01.
Article En | MEDLINE | ID: mdl-38427818
4.
J Neurosci ; 44(13)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38378273

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Chronic Pain , Ketamine , Humans , Mice , Male , Animals , Chronic Pain/metabolism , Depression/drug therapy , Thalamus , Neurons/metabolism , Comorbidity
5.
Physiol Behav ; 277: 114499, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38378074

An increasing body of evidence suggests that the state of hyperalgesia could be socially transferred from one individual to another through a brief empathetic social contact. However, how the social transfer of pain develops during social contact is not well-known. Utilizing a well-established mouse model, the present study aims to study the functional role of visual and olfactory cues in the development of socially-transferred mechanical hypersensitivity. Behavioral tests demonstrated that one hour of brief social contact with a conspecific mouse injected with complete Freund's adjuvant (CFA) was both sufficient and necessary for developing socially-transferred mechanical hypersensitivity. One hour of social contact with visual deprivation could not prevent the development of socially-transferred mechanical hypersensitivity, and screen observation of a CFA cagemate was not sufficient to develop socially-transferred mechanical hypersensitivity in bystanders. Methimazole-induced olfactory deprivation, a compound with reversible toxicity on the nasal olfactory epithelium, was sufficient to prevent the development of socially-transferred mechanical hypersensitivity. Intriguingly, repeated but not acute olfactory exposure to the CFA mouse bedding induced a robust decrease in 50 % paw withdrawal thresholds (50 %PWTs) to mechanical stimuli, an effect returned to the baseline level after two days of washout with clean bedding. The findings strongly indicate that the normal olfactory function is crucial for the induction of mechanical hypersensitivity through brief empathetic contact, offering valuable insights for animal housing in future pain research.


Hyperalgesia , Pain , Mice , Male , Animals , Mice, Inbred C57BL , Hyperalgesia/chemically induced , Disease Models, Animal , Inflammation
6.
Front Neurol ; 15: 1327558, 2024.
Article En | MEDLINE | ID: mdl-38327619

Background: Previous studies have demonstrated improvements in motor, behavioral, and emotional areas following transcranial direct current stimulation (tDCS), but no published studies have reported the efficacy of tDCS on postoperative recovery quality in patients undergoing lower limb major arthroplasty. We hypothesized that tDCS might improve postoperative recovery quality in elderly patients undergoing lower limb major arthroplasty. Methods: Ninety-six patients (≥65 years) undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) were randomized to receive 2 mA tDCS for 20 min active-tDCS or sham-tDCS. The primary outcome was the 15-item quality of recovery (QoR-15) score on postoperative day one (Т2). Secondary outcomes included the QoR-15 scores at the 2nd hour (T1), the 1st month (Т3), and the 3rd month (Т4) postoperatively, numeric rating scale scores, and fatigue severity scale scores. Results: Ninety-six elderly patients (mean age, 71 years; 68.7% woman) were analyzed. Higher QoR-15 scores were found in the active-tDCS group at T2 (123.0 [114.3, 127.0] vs. 109.0 [99.3, 115.3]; median difference, 13.0; 95% CI, 8.0 to 17.0; p < 0.001). QoR-15 scores in the active-tDCS group were higher at T1 (p < 0.001), T3 (p = 0.001), and T4 (p = 0.001). The pain scores in the active-tDCS group were lower (p < 0.001 at motion; p < 0.001 at rest). The fatigue degree scores were lower in the active-tDCS group at T1 and T2 (p < 0.001 for each). Conclusion: tDCS may help improve the quality of early recovery in elderly patients undergoing lower limb major arthroplasty. Clinical trial registration: The trial was registered at the China Clinical Trial Center (ChiCTR2200057777, https://www.chictr.org.cn/showproj.html?proj=162744).

7.
PLoS Biol ; 22(2): e3002518, 2024 Feb.
Article En | MEDLINE | ID: mdl-38386616

Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.


Chronic Pain , Mice , Male , Animals , Gyrus Cinguli/physiology , Hyperalgesia , Depression , Neurons/physiology
8.
Pain ; 165(1): 75-91, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37624905

ABSTRACT: Nerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m 6 A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m 6 A-specific DNA methyltransferase 1 ( N6amt1 ) in dorsal horn neurons. This decrease was attributed, at least partly, to a reduction in transcription factor Nr2f6 . Rescuing the decrease in N6amt1 reversed the loss of m 6 A at the promoter for inwardly rectifying potassium channel subfamily J member 16 ( Kcnj16 ), mitigating the nerve injury-induced upregulation of Kcnj16 expression in the dorsal horn and alleviating neuropathic pain hypersensitivities. Conversely, mimicking the downregulation of N6amt1 in naive mice erased DNA m 6 A at the Kcnj16 promoter, elevated Kcnj16 expression, and led to neuropathic pain-like behaviors. Therefore, decreased N6amt1 caused by NR2F6 is required for neuropathic pain, likely through its regulation of m 6 A-controlled KCNJ16 in dorsal horn neurons, suggesting that DNA m 6 A modification may be a potential new target for analgesic and treatment strategies.


Neuralgia , Site-Specific DNA-Methyltransferase (Adenine-Specific) , Animals , Mice , Down-Regulation , Hyperalgesia/metabolism , Neuralgia/genetics , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Spinal Cord Dorsal Horn/metabolism , Up-Regulation , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism
9.
Int J Surg ; 110(3): 1556-1563, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38116674

BACKGROUND: Chronic cough is common after lobectomy. Vagus nerves are part of the cough reflex. Accordingly, transection of the pulmonary branches of vagus nerve may prevent chronic cough. And there are no clear recommendations on the management of the pulmonary branches of vagus in any thoracic surgery guidelines. METHODS: This is a single-center, randomized controlled trial. Adult patients undergoing elective video-assisted thoracoscopic lobectomy and lymphadenectomy were randomized at a 1:1 ratio to undergo a sham procedure (control group) or transection of the pulmonary branches of the vagus nerve that innervate the bronchial stump plus the caudal-most large pulmonary branch of the vagus nerve. The primary outcome was the rate of chronic cough, as assessed at 3 months after surgery in the intent-to-treat population. RESULTS: Between 1 February 2020 and 1 August 2020, 116 patients (59.6±10.1 years of age; 45 men) were randomized (58 in each group). All patients received designated intervention. The rate of chronic cough at 3 months was 19.0% (11/58) in the vagotomy group versus 41.4% (24/58) in the control group (OR=0.332, 95% CI: 0.143-0.767; P =0.009). In the 108 patients with 2-year assessment, the rate of persistent cough was 12.7% (7/55) in the control and 1.9% (1/53) in the vagotomy group ( P =0.032). The two groups did not differ in postoperative complications and key measures of pulmonary function, for example, maximal voluntary ventilation, diffusing capacity of the lungs for carbon monoxide, and forced expiratory volume. CONCLUSION: Transecting the pulmonary branches of vagus nerve that innervate the bronchial stump plus the caudal-most large pulmonary branch decreased the rate of chronic cough without affecting pulmonary function in patients undergoing video-assisted lobectomy and lymphadenectomy.


Lung Neoplasms , Vagus Nerve Injuries , Adult , Humans , Male , Chronic Cough , Lung/surgery , Lung Neoplasms/surgery , Pneumonectomy/adverse effects , Pneumonectomy/methods , Thoracic Surgery, Video-Assisted/adverse effects , Thoracic Surgery, Video-Assisted/methods , Vagus Nerve/surgery , Vagus Nerve/physiology , Vagus Nerve Injuries/surgery , Female , Middle Aged , Aged
10.
J Neurosci ; 44(4)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38124016

The dorsal raphe nucleus (DRN) is an important nucleus in pain regulation. However, the underlying neural pathway and the function of specific cell types remain unclear. Here, we report a previously unrecognized ascending facilitation pathway, the DRN to the mesoaccumbal dopamine (DA) circuit, for regulating pain. Chronic pain increased the activity of DRN glutamatergic, but not serotonergic, neurons projecting to the ventral tegmental area (VTA) (DRNGlu-VTA) in male mice. The optogenetic activation of DRNGlu-VTA circuit induced a pain-like response in naive male mice, and its inhibition produced an analgesic effect in male mice with neuropathic pain. Furthermore, we discovered that DRN ascending pathway regulated pain through strengthened excitatory transmission onto the VTA DA neurons projecting to the ventral part of nucleus accumbens medial shell (vNAcMed), thereby activated the mesoaccumbal DA neurons. Correspondingly, optogenetic manipulation of this three-node pathway bilaterally regulated pain behaviors. These findings identified a DRN ascending excitatory pathway that is crucial for pain sensory processing, which can potentially be exploited toward targeting pain disorders.


Dorsal Raphe Nucleus , Ventral Tegmental Area , Mice , Male , Animals , Dorsal Raphe Nucleus/physiology , Ventral Tegmental Area/physiology , Dopaminergic Neurons/physiology , Nucleus Accumbens , Pain/metabolism
11.
Neurobiol Dis ; 190: 106374, 2024 Jan.
Article En | MEDLINE | ID: mdl-38097092

Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1ß. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.


Depressive Disorder , Humans , Male , Female , Animals , Mice , Mice, Inbred C57BL , Antidepressive Agents , Brain , Sucrose/therapeutic use , Stress, Psychological/complications , Depression/etiology , Disease Models, Animal
12.
J Neurosci ; 43(49): 8547-8561, 2023 12 06.
Article En | MEDLINE | ID: mdl-37802656

Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.


Hypersensitivity , Neuralgia , Rats , Male , Mice , Animals , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Transcription Factors/genetics , Transcription Factors/metabolism , Neuralgia/metabolism , Spinal Cord Dorsal Horn/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hypersensitivity/metabolism
13.
Neuroscience ; 535: 50-62, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37838283

Increasing evidence suggests that alternative splicing plays a critical role in pain, but its underlying mechanism remains elusive. Herein, we employed complete Freund's adjuvant (CFA) to induce inflammatory pain in mice. A combination of genomics research techniques, lentivirus-based genetic manipulations, behavioral tests, and molecular biological technologies confirmed that splicing factor Cwc22 mRNA and CWC22 protein were elevated in the spinal dorsal horn at 3 days after CFA injection. Knockdown of spinal CWC22 by lentivirus transfection (lenti-shCwc22) reversed CFA-induced thermal hyperalgesia and mechanical allodynia, whereas upregulation of spinal CWC22 (lenti-Cwc22) in naïve mice precipitated pain. Comprehensive transcriptome and genome analysis identified the secreted phosphoprotein 1 (Spp1) as a potential gene of CWC22-mediated alternative splicing, however, only Spp1 splicing variant 4 (Spp1 V4) was involved in thermal and mechanical nociceptive regulation. In conclusion, our findings demonstrate that spinal CWC22 regulates Spp1 V4 to participate in CFA-induced inflammatory pain. Blocking CWC22 or CWC22-mediated alternative splicing may provide a novel therapeutic target for the treatment of persistent inflammatory pain.


Alternative Splicing , Nociception , Animals , Mice , Freund's Adjuvant/toxicity , Hyperalgesia/metabolism , Inflammation/metabolism , Osteopontin/metabolism , Pain/drug therapy , Spinal Cord/metabolism
14.
Nat Commun ; 14(1): 4700, 2023 08 05.
Article En | MEDLINE | ID: mdl-37543693

A comorbidity of chronic pain is sleep disturbance. Here, we identify a dual-functional ensemble that regulates both pain-like behaviour induced by chronic constrictive injury or complete Freund's adjuvant, and sleep wakefulness, in the nucleus accumbens (NAc) in mice. Specifically, a select population of NAc neurons exhibits increased activity either upon nociceptive stimulation or during wakefulness. Experimental activation of the ensemble neurons exacerbates pain-like (nociceptive) responses and reduces NREM sleep, while inactivation of these neurons produces the opposite effects. Furthermore, NAc ensemble primarily consists of D1 neurons and projects divergently to the ventral tegmental area (VTA) and preoptic area (POA). Silencing an ensemble innervating VTA neurons selectively increases nociceptive responses without affecting sleep, whereas inhibiting ensemble-innervating POA neurons decreases NREM sleep without affecting nociception. These results suggest a common NAc ensemble that encodes chronic pain and controls sleep, and achieves the modality specificity through its divergent downstream circuit targets.


Chronic Pain , Nucleus Accumbens , Mice , Animals , Nucleus Accumbens/physiology , Ventral Tegmental Area/physiology , Neurons , Sleep/physiology
15.
BMC Anesthesiol ; 23(1): 284, 2023 08 22.
Article En | MEDLINE | ID: mdl-37608257

BACKGROUND: Cognitive decline following surgery is a common concern among elderly individuals. Leukocyte telomere length (LTL) can be assessed as a biological clock connected to an individual lifespan. However, the mechanisms causing this inference are still not fully understood. As a result of this, LTL has the potential to be useful as an aging-related biomarker for assessing delayed neurocognitive recovery (dNCR) and related diseases. METHODS: For this study, 196 individuals over 60 who were scheduled due to major non-cardiac surgical operations attended neuropsychological testing before surgery, followed by additional testing one week later. The finding of dNCR was based on a measured Z-score ≤ -1.96 on two or more separate tests. The frequency of dNCR was presented as the primary outcome of the study. Secondly, we evaluated the association between dNCR and preoperative LTL. RESULTS: Overall, 20.4% [40/196; 95% confidence interval (CI), 14.7-26.1%] of patients exhibited dNCR 1-week post-surgery. Longer LTL was identified as a predictor for the onset of early cognitive impairment resulting in postoperative cognitive decline [odds ratio (OR), 14.82; 95% CI, 4.01-54.84; P < 0.001], following adjustment of age (OR, 12.33; 95% CI, 3.29-46.24; P < 0.001). The dNCR incidence based on LTL values of these patients, the area under the receiver operating characteristic (ROC) curve was 0.79 (95% CI, 0.722-0.859; P < 0.001). At an optimal cut-off value of 0.959, LTL values offered respective specificity and sensitivity values of 64.7% and 87.5%. CONCLUSIONS: In summary, the current study revealed that the incidence of dNCR was strongly associated with prolonged LTL. Furthermore, this biomarker could help identify high-risk patients and offer insight into the pathophysiology of dNCR.


Aging , Cognitive Dysfunction , Aged , Humans , Retrospective Studies , Leukocytes , Telomere
16.
Cell Rep ; 42(7): 112719, 2023 07 25.
Article En | MEDLINE | ID: mdl-37392387

The neural circuit mechanisms underlying postoperative cognitive dysfunction (POCD) remain elusive. We hypothesized that projections from the medial prefrontal cortex (mPFC) to the amygdala are involved in POCD. A mouse model of POCD in which isoflurane (1.5%) combined with laparotomy was used. Virally assisted tracing techniques were used to label the relevant pathways. Fear conditioning, immunofluorescence, whole-cell patch-clamp recordings, and chemogenetic and optogenetic techniques were applied to investigate the role of mPFC-amygdala projections in POCD. We find that surgery impairs memory consolidation but not retrieval of consolidated memories. In POCD mice, the glutamatergic pathway from the prelimbic cortex to the basolateral amygdala (PL-BLA) shows reduced activity, whereas the glutamatergic pathway from the infralimbic cortex to the basomedial amygdala (IL-BMA) shows enhanced activity. Our study indicates that the hypoactivity in the PL-BLA pathway interrupts memory consolidation, whereas the hyperactivity in the IL-BMA promotes memory extinction, in POCD mice.


Basolateral Nuclear Complex , Prefrontal Cortex , Mice , Animals , Amygdala , Cerebral Cortex , Memory Disorders , Neural Pathways
17.
Anesthesiology ; 139(3): 262-273, 2023 09 01.
Article En | MEDLINE | ID: mdl-37440205

BACKGROUND: Individualized positive end-expiratory pressure (PEEP) guided by dynamic compliance improves oxygenation and reduces postoperative atelectasis in nonobese patients. The authors hypothesized that dynamic compliance-guided PEEP could also reduce postoperative atelectasis in patients undergoing bariatric surgery. METHODS: Patients scheduled to undergo laparoscopic bariatric surgery were eligible. Dynamic compliance-guided PEEP titration was conducted in all patients using a downward approach. A recruitment maneuver (PEEP from 10 to 25 cm H2O at 5-cm H2O step every 30 s, with 15-cm H2O driving pressure) was conducted both before and after the titration. Patients were then randomized (1:1) to undergo surgery under dynamic compliance-guided PEEP (PEEP with highest dynamic compliance plus 2 cm H2O) or PEEP of 8 cm H2O. The primary outcome was postoperative atelectasis, as assessed with computed tomography at 60 to 90 min after extubation, and expressed as percentage to total lung tissue volume. Secondary outcomes included Pao2/inspiratory oxygen fraction (Fio2) and postoperative pulmonary complications. RESULTS: Forty patients (mean ± SD; 28 ± 7 yr of age; 25 females; average body mass index, 41.0 ± 4.7 kg/m2) were enrolled. Median PEEP with highest dynamic compliance during titration was 15 cm H2O (interquartile range, 13 to 17; range, 8 to 19) in the entire sample of 40 patients. The primary outcome of postoperative atelectasis (available in 19 patients in each group) was 13.1 ± 5.3% and 9.5 ± 4.3% in the PEEP of 8 cm H2O and dynamic compliance-guided PEEP groups, respectively (intergroup difference, 3.7%; 95% CI, 0.5 to 6.8%; P = 0.025). Pao2/Fio2 at 1 h after pneumoperitoneum was higher in the dynamic compliance-guided PEEP group (397 vs. 337 mmHg; group difference, 60; 95% CI, 9 to 111; P = 0.017) but did not differ between the two groups 30 min after extubation (359 vs. 375 mmHg; group difference, -17; 95% CI, -53 to 21; P = 0.183). The incidence of postoperative pulmonary complications was 4 of 20 in both groups. CONCLUSIONS: Postoperative atelectasis was lower in patients undergoing laparoscopic bariatric surgery under dynamic compliance-guided PEEP versus PEEP of 8 cm H2O. Postoperative Pao2/Fio2 did not differ between the two groups.


Pulmonary Atelectasis , Respiratory Distress Syndrome , Female , Humans , Positive-Pressure Respiration/methods , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/prevention & control , Obesity/complications , Lung , Respiratory Distress Syndrome/complications
19.
Pharmacol Biochem Behav ; 230: 173590, 2023 09.
Article En | MEDLINE | ID: mdl-37336427

Ketamine has been increasingly used as a rapid-onset antidepressant in specific clinical settings. However, as a psychedelic reagent, the potential of physical and psychological dependence limits its clinical use. Here, we added retigabine, a KCNQ channel opener, as an adjunctive treatment to observe its effect on ketamine's antidepressant property in a forced swim test in both male and female C57BL/6 J mice. Behavioral data demonstrated that intraperitoneal injection of ketamine exhibited a dose-dependent effect on animals' immobility performance in the forced swim test. Adding retigabine was sufficient to induce a remarkable antidepressant effect in mice treated with a relatively lower dose of ketamine which failed to be antidepressant when administrated separately. When simultaneously gave retigabine, ketamine's antidepressant effect in the forced swim test was significantly enhanced with a prolonged effective duration. Together, these results from both male and female mice indicated that adjunctive treatment with retigabine was an alternative to promote the antidepressant effect of ketamine, thus holding the possibility of encountering its possible physical and psychological dependence.


Depression , Ketamine , Male , Female , Mice , Animals , Depression/drug therapy , Ketamine/pharmacology , Mice, Inbred C57BL , Antidepressive Agents/pharmacology
20.
Mol Neurobiol ; 60(10): 5789-5804, 2023 Oct.
Article En | MEDLINE | ID: mdl-37349621

The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.


Propofol , Propofol/pharmacology , Nucleus Accumbens , GABAergic Neurons , Hypnotics and Sedatives/pharmacology , Anesthesia, General
...